Pointers l 351

is stored at address 55
is stored at address 56
is stored at address 57
is stored at address 58

— T — m

Length of the string = 5

Fig. 11.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore the follow-
ing statements are valid:

char *name;
name = "Delhi";

These statements will declare name as a pointer to character and assign to name the constant
character string “Delhi”. You might remember that this type of assignment does not apply to charac-
ter arrays. The statements like

char name[20];
name = “"Delhi”;

do not work.

11.12 ARRAY OF POINTERS

One important use of pointers is in handling of a table of strings. Consider the following array of
strings:
char name [3][25];

This says that the name is a table containing three names, each with a maximum length ot 23
characters (including null character). The total storage requirements for the name table are 75 bytes.

l

We know that rarely the individual strings will be of equal lengths. Therefore, instead of making
each row a fixed number of characters, we can make it a pointer to a string of varying length. For
example,

char *name[3] = {
"New Zealand",
"Australia”,
"India"

}s

352 Programming in ANSI C

declares name to be an array of three pointers to characters, each pointer pointing to a particular
name as:

name [0] -———-» New Zealand
name [1] —— Australia
name [2] ——-» India

This declaration allocates only 28 bytes, sufficient to hold all the characters as shown

Nie |w Zleia |l aln a o
&
1
Ajlu|s |t ra || i ia i\o
Fin|dlilao

The following statement would print out all the three names:

for(i = 0; 1 <= 2; i++)
printf("%s\n", name[il);
To access the jth character in the ith name, we may write as
*(nameli]+j) _
The character arrays with the rows of varying length are called ‘ragged arrays’ and are better
handled by pointers. ‘ »
Remember the difference between the notations *p[3] and (*p)[3]. Since * has a lower precedence

than [], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a pointer to an array of
three elements.

11.13 POINTERS AS FUNCTION ARGUMENTS’_‘“;

We have noted earlier that when an array is passed to a function as an argument, only the address of
the first element of the array is passed, but not the actual values of the array elements. It X is an array,
when we call sort(x), the address of x[0] is passed to the functionsert. The function uses this address
for manipulating the array elements. Similarly, we can pass the address of a variable as an argument
to a function in the normal fashion. We used this method when discussing functions that return mul-
tiple values (see Chapter 9).

When we pass addresses to a function, the parameters receiving the addresses should be pointers.
The process of calling a function using pointers to pass the addresses of variables is known as ‘call by
reference’. (You know, the process of passing the actual value of variables is known as “call by
value”.) The function which is called by ‘reference’ can change the value of the variable used in the
call. '

Consider the following code:

main()
{

int x;

Pointers I 353

x = 20;
change (&x) ; /* call by reference or address */
printf("%d\n",x);

}

change(int *p)

{

}

When the function change() is called, the address of the variable x, not its value, is passed into the
function change(). Inside change(), the variable p is declared as a pointer and therefore p is the
address of the variable x. The statement,

*p = *p + 10;
means ‘add 10 to the value stored at the address p’. Since p represents the address of x, the value of
x is changed from 20 to 30. Therefore, the output of the program will be 30, not 20.
Thus, call by reference provides a mechanism by which the function can change the stored values

in the calling function. Note that this mechanism is also known as “call by address™ or “pass by
pointers”

*p = *p + 10;

Example 11.6) Write a function using pointers to exchange the values stored in two
locations in the memory.

The program in Fig. 11.11 shows how the contents of two locations can be exchanged using their
address locations. The function exchange() receives the addresses of the variables x and y and ex-
changes their contents.

Program
void exchange (int *, int *); /* prototype */
main()
{
int x, y;
x = 100;
y = 200;
printf("Before exchange : x = %d y = %d\n\n", x, y);
exchange (&x,&y); /* call */
printf("After exchange : x = %d y = %d\n\n", x, y);
}
exchange (int *a, int *b)
{
int t;
t = *a; /* Assign the value at address a to t */
*a = *b; /* put b into a */

*b

t; /* put t into b */

354| Programming in ANSI C
Output '

Before exchange : x = 100 y = 200
After exchange : x =200 y =100

Fig. 11.11 Passing of pointers as function parameters

You may note the following points:
1. The function parameters are declared as pointers.
2. The dereferenced pointers are used in the function body.
3. When the function is called, the addresses are passed as actual arguments.

The use of pointers to access array elements is very common in C. We have used a pointer to
traverse array elements in Example 11.4. We can also use this technique in designing user-defined
functions discussed in Chapter 9. Let us consider the problem sorting an array of integers discussed in
Example 9.6.

The function sort may be written using pointers (instead of array indexing) as shown:

void sort (int m, int *x)
{ int i j, temp;
for (i=1; i<= m=1; i++)
for (j=1; j<= m=1; j++)
if (*(x+j=1) >= *(x+j))
{

temp = *(x+j-1);
*(x+j-1) = *(x+j);
*(x+j) = temp;

}

Note that we have used the pointer x (instead of array x[]) to receive the address of array passed
and therefore the pointer x can be used to access the array elements (as pointed out in Section 11.10).
This function can be used to sort an array of integers as follows:

1'n£ ;core[4] = {45, 90, 71, 83};

sort(4, score); /* Function call */

The calling function must use the following prototype declaration.
void sort (int, int *);

This tells the compiler that the formal argument that receives the array is a pointer, not array
variable.
Pointer parameters are commonly employed in string functions. Consider the function copy which
copies one string to another.
copy(char *sl, char *s2)

while((*sl++ = *s2++) 1= '"\0')

}

Pointers |355

This copies the contents of's2 into the string s1. Parameters s1 and s2 are the pointers to character
strings, whose initial values are passed from the calling function. For example, the calling statement

copy(namel, name2);

will assign the address of the first element of namel to sl and the address of the first element of
name?2 to s2.

Note that the value of *s2++ is the character thats2 pointed to before s2 was incremented. Due to
the postfix ++, s2 is incremented only after the current value has been fetched. Similarly, sl is
incremented only after the assignment has been completed.

Each character, after it has been copied, is compared with \0” and therefore copying is terminated
as soon as the “\0” is copied.

i1.14 FUNCTIONS RETURNING POINTERS : A
We have seen so far that a function can return a single value by its name or return multiple values
through pointer parameters. Since pointers are a data type in C, we can also force a function to return
a pointer to the calling function. Consider the following code:

int *larger (int *, int *); /* prototype */
main ()
{

int a = 10;

int b = 20;

int *p;

p = larger(&a, &b); /Function call */
printf ("%d", *p);
}

int *larger (int *x, int *y)

if (*x>*y)

return (x); /*address of a */
else

return (y); /* address of b */

}

The function larger receives the addresses of the variables a and b, decides which one is larger
using the pointers x and y and then returns the address of its location. The returned value is then
assigned to the pointer variable p in the calling function. In this case, the address of b is returned
and assigned to p and therefore the output will be the value of b, namely, 20.

Note that the address returned must be the address of a variable in the calling function. It is an
error to return a pointer to a local variable in the called function.

11.15 POINTERS TO FUNCTIONS

A tunction, like a variable, has a type and an address location in the memory. It is therefore, possible
to declare a pointer to a function, which can then be used as an argument in another function. A
pointer to a function is declared as follows:

356| Programming in ANSIC

type (*fptr) ();

This tells the compiler that fptr is a pointer to a function, which returns fype value. The parenthe-
ses around *fptr are necessary. Remember that a statement like

type *gptr();

would declare gptr as a function returning a pointer to fype.
We can make a function pointer to point to a specific function by simply assigning the name of the
function to the pointer. For example, the statements

double mul (int, int);
double (*p1)();
pl = mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point to the function
mul. To call the function mul, we may now use the pointer pl with the list of parameters. That 1s,
(*p1)(x,y)/* Function call */
is equivalent to
mul(x,y)

Note the parentheses around *p1.

Example 11.7| Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig. 11.12. The
printing is done by the function table by evaluating the function passed to it by the main.
With table, we declare the parameter f as a pointer to a function as follows:

double (*f)();
The value returned by the function is of type double. When table is called in the statement
table (y, 0.0, 2, 0.5);

we pass a pointer to the function y as the first parameter of table. Note that y is not followed by a
parameter list.
During the execution of table, the statement

value = (*f)(a);
calls the function y which is pointed to by f, passing it the parameter a. Thus the functiony is evalu-

ated over the range 0.0 to 2.0 at the intervals of 0.5.
Similarly, the call

table (cos, 0.0, PI, 0.5);

passes a pointer to cos as its first parameter and therefore, the function table evaluates the value of
cos over the range 0.0 to Pl at the intervals of 0.5.

Pointers I 357

Program
#include <math.h>
#define PI 3.1415926
double y{(double);
double cos(double);
double table (double(*f)(), double, double, double);

main()
{ printf("Table of y(x) = 2*x*x—x+1\n\n");
table(y, 0.0, 2.0, 0.5);
printf("\nTable of cos(x)\n\n");
table(cos, 0.0, PI, 0.5);
}
double table(double(*f)(),double min, double max, double step)
{ double a, value;
for(a = min; a <= max; a += step)
{
value = (*f)(a);
printf("%5.2f %10.4f\n", a, value);
}
}
double y(double x)

{

return{2*x*x-x+1);

}
Output
Table of y{x) = 2*x*x-x+1
0.00 1.0000
0.50 1.0000
1.00 2.0000
~1.50 4.0000
2.00 7.0000
Table of cos(x)
0.00 1.0000
0.50 0.8776
1.00 0.5403
1.50 0.0707
2.00 -0.4161
2.50 -0.8011
3.00 -0.9900

Fig. 11.12 Use of pointers to functions

358| Programming in ANSIC

@ Compatibility and Casting)

A variable declared as a pointer is not just a pointer type variable. It is also a
pointer to a specific fundamental data type, such as a character. A pointer there-
fore always has a type associated with it. We cannot assign a pointer of one type
to a pointer of another type, although both of them have memory addresses as
their values. This is known as incompatibility of pointers.

All the pointer variables store memory addresses, which are compatible, but
what is not compatible is the underlying data type to which they point to. We
cannot use the assignment operator with the pointers of different types. We can
however make explicit assignment between incompatible pointer types by using
cast operator, as we do with the fundamental types. Example:

int x;

char *p;

p = (char *) & x;
In such cases, we must ensure that all operations that use the pointer p must
apply casting properly.

We have an exception. The exception is the void pointer (void *). The void
pointer is a generic pointer that can represent any pointer type. All pointer types
can be assigned to a void pointer and a void pointer can be assigned to any
pointer without casting. A void pointer is created as follows:

void *vp;

(? Remember that since a void pointer has no object type, it cannot be de-refer-

enced. J

11.16 POINTERS AND STRUCTURES

We know that the name of an array stands for the address of its zeroth element. The same thing is true
of the names of arrays of structure variables. Suppose product is an array variable of struct type.
The name product represents the address of its zeroth element. Consider the following declaration:

struct inventory

{
char name[30];
int number;
float price;

} product[2], *ptr;

This statement declares product as an array of two elements, each of the type struct inventory and
ptr as a pointer to data objects of the type struct inventory. The assignment

ptr = product;

Pointers I 359

would assign the address of the zeroth element of product to ptr. That is, the pointer ptr will now
point to product[0]. Its members can be accessed using the following notation.

ptr —> name
ptr —> number
ptr —> price

The symbol > is called the arrow operator (also known as member selection operator) and is
made up of a minus sign and a greater than sign. Note that ptr—> is simply another way of writing
product|0].

When the pointer ptr is incremented by one, it is made to point to the next record, i.e., product[1].
The tollowing for statement will print the values of members of all the elements of product array.

for(ptr = product; ptr < product+2; ptr++)

printf ("%s %d %f\n", ptr->name, ptr—>number, ptr->price);
We could also use the notation
(*ptr) .number

to access the member number. The parentheses around *ptr are necessary because the member
operator *.” has a higher precedence than the operator *.

Example lL.?J Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array of
structures is shown in Fig. 11.13. The program highlights all the features discussed above. Note that
the pointer ptr (of type struct invent) is also used as the loop control index in for loops.

Program
struct invent
{
char *name[20];
int number;
float price;
}s
main()
{
struct invent product[3], *ptr;
printf("INPUT\n\n");
for(ptr = product; ptr < product+3; ptr++)
scanf("%s %d %f", ptr->name, &ptr—>number, &ptr->price);
printf("\nOUTPUT\n\n");
ptr = product;
while(ptr < product + 3)
{
printf("%-20s %5d %10.2f\n",
ptr->name,
ptr—>number,

360] Programmingin ANSIC

ptr—>price);
ptr++;
}
}
Output

INPUT
Washing machine 5 7500
Electric_iron 12 350
Two_in_one 7 1250
OUTPUT
Washing machine 5 7500.00
Electric_iron 12 350.00
Two_in_one 7 1250.00

Fig. 11.13 Pointer to structure variables

While using structure pointers, we should take care of the precedence of operators.
The operators ‘—>" and “.”, and () and [] enjoy the highest priority among the operators. They bind
very tightly with their operands. For example, given the definition

struct

{ int count;
float *p; /* pointer inside the struct */
} ptr; /* struct type pointer */
then the statement
++ptr->count;
increments count, not ptr. However,
(++ptr)—>count;
increments ptr first, and then links count. The statement
ptr++ —> count;

is legal and increments ptr after accessing count.
The following statements also behave in the similar fashion.

*ptr—>p Fetches whatever p points to.

*ptr—>p++ Increments p after accessing whatever it points to.
(*ptr—>p)++ Increments whatever p points to.

*ptr++—>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a function. We
also saw an example where a function receives a copy of an entire structure and returns it after

Pointers |361

working on it. As we mentioned earlier, this method is inefficient in terms of both, the execution
speed and memory. We can overcome this drawback by passing a pointer to the structure and then
using this pointer to work on the structure members. Consider the following function:

print_invent (struct invent *item)

{
printf("Name: %s\n", item->name);
printf("Price: %f\n", item->price);
}

This function can be called by

print_invent(&product);

The formal argument item receives the address of the structure product and therefore it must be
declared as a pointer of type struct invent, which represents the structure of product.

Just Remember

Bor B R OB OB OBRR OBRR

B

Only an address of a variable can be stored in a pointer variable.

Do not store the address of a variable of one type into a pointer variable of an-
other type. '

The value of a variable cannot be assigned to a pointer variable.

A pointer variable contains garbage until it is initialized. Therefore we must not
use a pointer variable before it is assigned, the address of a variable.
Remember that the definition for a pointer variable allocates memory only for the
pointer variable, not for the variable to which it is pointing.

If we want a called function to change the value of a variable in the calling func-
tion, we must pass the address of that variable to the called function.

When we pass a parameter by address, the corresponding formal parameter must
be a pointer variable. -

It is an error to assign a numeric constant to a pointer variable.

It is an error to assign the address of a variable to a variable of any basic data
types.

It is an error to assign a pointer of one type to a pointer of another type without a
cast (with an exception of void pointer).

A proper understanding of a precedence and associativity rules is very important
in pointer applications. For example, expressions like *p++, *p[1, (*p)[],
(p).member should be carefully used.

When an array is passed as an argument to a function, a pointer is actually
passed. In the header function, we must declare such arrays with proper size,
except the first, which is optional.

A very common error is to use (or not to use) the address operator (&) and the
indirection operator (*) in certain places. Be careful. The compiler may not warn
such mistakes.

362 | Programming in ANSI C
CASE STUDIES

1. Processing of Examination Marks

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

Student name Marks obtained
S. Laxmi 45 67 38 55
V.S. Rao 77 89 56 69

It is required to compute the total marks obtained by each student and print the rank list based on
the total marks.

The program in Fig. 11.14 stores the student names in the array name and the marks in the array
marks. After computing the total marks obtained by all the students, the program prepares and prints
the rank list. The declaration

int marks[STUDENTS] [SUBJECTS+1];

defines marks as a pointer to the array’s first row. We use rowptr as the pointer to the row of
marks. The rowptr is initialized as follows:

int (*rowptr)[SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the actual
argument marks. The parentheses around *rowptr makes the rowptr as a pointer to an array of
SUBJECTS+1 integers. Remember, the statement

int *rowptr[SUBJECTS+1];

would declare rowptr as an array of SUBJECTS+1 elements.

When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of
each row of array, making rowptr point to the next row. Since rowptr points to a particular row.
(*rowptr)[x] points to the xth element in the row.

Program

#define STUDENTS 5
#define SUBJECTS 4
#include <string.h>

main()
{
char name[STUDENTS][20];
int marks[STUDENTS] [SUBJECTS+1];

printf("Input students names & their marks in four subjects\n");
get list{(name, marks, STUDENTS, SUBJECTS);

get_sum(marks, STUDENTS, SUBJECTS+1);

printf("\n");

print_1ist(name,marks,STUDENTS,SUBJECTS+1);

get_rank_list(name, marks, STUDENTS, SUBJECTS+1);

Pointers I 363

printf("\nRanked List\n\n");
print_]1st(name,marks,STUDENTS,SUBJECTS+1);
}
/* Input student name and marks */
get list(char *string[],
int array [] [SUBJECTS +1], int m, int n)
{
int i, j, (*rowptr)[SUBJECTS+1] = array;
for(i = 0; 1 < m; i++)
{
scanf("%s", string[i]);
for(j = 05 § < SUBJECTS; j++)
scanf("%d", &(*(rowptr + 1))[il1);

}
/* Compute total marks obtained by each student */

get sum(int array [] [SUBJECTS +1], int m, int n)

{
int i, j, (*rowptr)[SUBJECTS+1] = array;
for(i = 0; i < m; i++)
{
(*(rowptr + i))[n-1] = 0;
for(j =0; j < n-1; j++)
(*(rowptr + 1)) [n-1] += (*(rowptr + i))[j];
}
}
/* Prepare rank list based on total marks */

get_rank_list(char *string [],
int array [] [SUBJECTS + 1]
int m,
int n)
{
int i, j, k, (*rowptr)[SUBJECTS+1] = array;
char *temp;

for(i = 13 1 <= m-1; i+4)
for(j = 1; j <= m=i; j++)
'If((*(Y’OWptr‘ + J—l))[n-l] < (*(I"OWDtY‘ + J))[n—l])
{

swap_string(string[j-1], string[jl);

for(k = 0; k < n; k++)
swap_int(&(*(rowptr + j-1)) [k],&(*(rowptr+j))[k]);

Programming in ANSI C
}

1
/* Print out the ranked list
print 1ist(char *string[],
int array [] [SUBJECTS + 1],

int m,
int n)
{
int i, Jj, (*rowptr)[SUBJECTS+1] = array;
for(i = 0; i < m; i++)
{
printf("%-20s", string[il);
for(j = 05 j < n; j++)
printf("%5d", (*(rowptr + i))[i]);
printf("\n");
}
}
/* Exchange of integer values
swap_int(int *p, int *q)
{
int temp;
temp = *p;
*p = *q;
*q = temp;
}
/* Exchange of strings */

swap_string(char s1[], char s2[])
{

char swaparea[256];

int i;

for(i = 0; i < 256; i++)
swapareal[i] = '\0';

i=0;

while(s1[i] != '\0' & i < 256)
{

swaparea[i] = s1[i];

i+t
}
i =0;
while(s2[i] != '\0' && i < 256)
{
s1[i] = s2[i];
s1[++i] = "\0';
}
i=0;

*/

*/

{
s2[i] = swaparea[i];
s2[++i] = '"\0';

}

Output

S.Laxmi 45 67 38 55
V.S.Rao 77 89 56 69
A.Gupta 66 78 98 45
S.Mani 86 72 0 25
R.Daniel 44 55 66 77
S.Laxmi 45
V.S.Rao 77
A.Gupta 66
S.Mani 86
R.Daniel 44
Ranked List

V.S.Rao 77
A.Gupta 66
R.Daniel 44
S.Laxmi 45
S.Mani 86

while(swaparea[i] = '\0')

67
89
78
72
55

89
78
55
67
72

Input students names & their marks in

38
56
98

0
66

56
98
66
38

0

four subjects

55
69
45
25
77

69
45
77
55
25

205
291
287
183
242

291
287
242
205

183

Pointers |365

Fig. 11.14 Preparation of the rank list of a class of students

2. Inventory Updating

The price and quantity of items stocked in a store changes every day. They may either increase or
decrease. The program in Fig. 11.15 reads the incremental values of price and quantity and computes

the total value of the items in stock.

The program illustrates the use of structure pointers as function parameters. &item, the address
of the structure item, is passed to the functions update() and mul(). The formal arguments product
and stock, which receive the value of &item, are declared as pointers of type struct stores.

Program
struct stores
{
char name[20];
float price;
int quantity;

s

366| Programming in ANSI C

main()

{
void update(struct stores *, float, int);
float p_increment, value;
int g_increment;

struct stores item = {"XYZ", 25.75, 12};
struct stores *ptr = &item;

printf("\nInput increment values:");
printf(" price increment and quantity increment\n");
scanf("%f %d", &p_increment, &q_increment);

/* ___________________________ */
update(&item, p increment, g increment);

JX - - - - - - - - - [e e e e e e e e e - */
printf("Updated values of item\n\n");
printf("Name : %s\n",ptr—>name);
printf("Price ¢ %f\n",ptr—>price);
printf("Quantity : %d\n",ptr->quantity);

J* e e e e e e e e e e ff e e e e e e e o el */
value = mul(&item);

/* ___________________________ */
printf("\nvValue of the item = %f\n", value);

void update(struct stores *product, float p, int q)

product->price += p;
product—>quantity += q;
}

float mul(struct stores *stock)

{
}

Output

return(stock—>price * stock->quantity);

Input increment values: price increment and quantity increment
10 12
Updated values of item

Name : XYZ
Price : 35.750000
Quantity : 24

Value of the item = 858.000000

Fig. 11.15 Use of structure pointers as function parameters

Pointers | 367

REVIEW QUESTIONS

11.1

11.3
[1.4
11.5

State whether the following statements are true or false.
(a) Pointer constants are the addresses of memory locations.
(b) Pointer variables are declared using the address operator.
(c) The underlying type of a pointer variable is void.
(d) Pointers to pointers is a term used to describe pointers whose contents are the address of
another pointer.
(e) Itis possible to cast a pointer to float as a pointer to integer.
(f) An integer can be added to a pointer.
(g) A pointer can never be subtracted from another pointer.
(h) When an array is passed as an argument to a function, a pointer is passed.
(1) Pointers cannot be used as formal parameters in headers to function definitions.
(j) Value of a local variable in a function can be changed by another function.
Fill in the blanks in the following statements:
(a) A pointer vgriable contains as its value the M another variable.
(b) The MW ‘Operator is used with a pointer to de-reference the address contained in the
pointer.
(¢) The _ operator returns the value of the variable to which its operand points.
(d) The only integer that can be assigned to a pointer variableis
{e) The pointer that is declaredas cannot be de-referenced.
What is a pointer?
How is a pointer initialized?
Explain the effects of the following statements:
(a) int a, *b = &a;
(b) int P, *Ps
(¢) char *s;
(d) a = (float *) &x);
(e) double(*f)();
If m and n have been declared as integers and p1 and p2 as pointers to integers, then state
errors, if any, in the following statements.

(a) pl = &m;
(b) p2 = n;
(c) *pl = &n;

(dy p2 = &*&m;
(e) m = p2-pl;
(0 pl = &p2;
(g) m = *pl + *p2++;

11.7 Distinguish between (*m)[S] and *m[5].

11.8

Find the error, if any, in each of the following statements:
(a) int x = 10;

(b) int *y = 10;

(¢) int a, *b = &a;

368

11.9

11.10

Programming in ANSIC

(d) int m;
int **x = &m;
Given the following declarations:

int x = 10, y = 10;
int *pl = &x, *p2 = 8&y;

What is the value of each of the following expressions?

(a) (*pl)++

(b) ~~(*p2)

(¢) *pl+(*p2)--

(d) ++(*p2)~-*pl

Describe typical applications of pointers in developing programs.

PROGRAMMING EXERCISES

11.2

11.3

11.4

11.5

11.6

Write a program using pointers to read in an array of integers and print its elements in reverse
order.
We know that the roots of a quadratic equation of the form

ax’ +bx +¢c=0
are given by the following equations:

_ —b + square - root (b* — 4ac)
e 2a

X = b -- square - root (b* —4ac)
B 2a

Write a function to calculate the roots. The function must use two pointer parameters, one to
receive the coefficients a, b, and c, and the other to send the roots to the calling function.
Write a function that receives a sorted array of integers and an integer value, and inserts the
value in its correct place.
Write a function using pointers to add two matrices and to return the resultant matrix to the
calling function.
Using pointers, write a function that receives a character string and a character as argument
and deletes all occurrences of this character in the string. The function should return the cor-
rected string with no holes.
Write a function day_name that receives a number n and returns a pointer to a character
string containing the name of the corresponding day. The day names should be keptina static
table of character strings local to the function.
Write a program to read in an array of names and to sort them in alphabetical order. Use sort
function that receives pointers to the functions strcmp and swap.sort in turn should call these
functions via the pointers.

11.8

1.9
11.10

Pointers]369

Given an array of sorted list of integer numbers, write a function to search for a particular
item, using the method of binary search. And also show how this function may be used in a
program. Use pointers and pointer arithmetic.

(Hint: In binary search, the target value is compared with the array’s middle element. Since
the table is sorted, if the required value is smaller, we know that all values greater than the
middle element can be ignored. That is, in one attempt, we eliminate one half the list. This
search can be applied recursively till the target value is found.)

Write a function (using a pointer parameter) that reverses the elements of a given array.
Write a function (using pointer parameters) that compares two integer arrays to see whether
they are identical. The function returns 1 if they are identical, 0 otherwise.

ate

12

File Management in C

12.1 INTRODUCTION

Until now we have been using the functions such as scanf and printf to read and write data. These are
console oriented I/O functions, which always use the terminal (keyboard and screen) as the target
place. This works fine as long as the data is small. However, many real-life problems involve large
volumes of data and in such situations, the console oriented I/O operations pose two major problems.
1. It becomes cumbersome and time consuming to handle large volumes of data through
terminals.
2. The entire data is lost when either the program is terminated or the computer is turned oft.

It is therefore necessary to have a more flexible approach where data can be stored on the disks
and read whenever necessary, without destroying the data. This method employs the concept of files
to store data. A file is a place on the disk where a group of related data is stored. Like most other
languages, C supports a number of functions that have the ability to perform basic file operations,
which include:

e naming a file,

e opening afile,

¢ reading data from a file,
e writing data to a file, and
» closing a file.

There are two distinct ways to perform file operations in C. The first one is known as the low-level
I/0 and uses UNIX system calls. The second method is referred to as the high-level I/0 operation and
ases functions in C’s standard I/O library. We shall discuss in this chapter, the important file han-
dling functions that are available in the C library. They are listed in Table 12.1.

File Management in C I 371
Table 12.1 High Level I/O Funcrions

Function name Operation
fopen() * Creates a new tile for use.
* Opens an existing file for use.
felose() * Closes a file which has been opened for use.
gete() * Reads a character from a file.
putc() * Writes a character to a file.
fprintf() * Wriles a set of data values to a file.
fscant() * Reads a set of data values from a file.
getw() * Reads an integer from a file.
putw() * Writes an integer to a file.
fseek() * Sets the position to a desired point in the file.
ftell() * Gives the current position in the file (in terms of bytes from the start).
rewind() * Sets the position to the beginning of the file.

There are many other functions. Not all of them are supported by all compilers. You should check
your C library before using a particular 1/0 function.

DERININDG AN OPEMG A IFILE

If we want to store data in a file in the secondary memory, we must specify certain things about the
file. to the operating system. They include:
1. Filename.
2. Data structure.
3. Purpose.
Filename is a string of characters that make up a valid filename for the operating system. It may
contain two parts. a primary name and an optional period with the extension. Examples:
Input.data
store
PROG.C
Student.c
Text.out
Data structure of a file is defined as FILE in the library of standard /O function definitions.
Therefore, all files should be declared as type FILE before they are used. FILE is a defined data type.
When we open a file, we must specify what we want to do with the file. For example, we may write
data to the file or read the already existing data.
Following is the general format for declaring and opening a file:

FILE *fp;
fp = fopen("filename", “"mode");

«

The first statement declares the variable fp as a “pointer to the data type FILE”. As stated earlier,
FILE is a structure that is defined in the /O library. The second statement opens the file named
filename and assigns an identifier to the FILE type pointer fp. This pointer which contains all the

372| Programmingin ANSIC

information about the file is subsequently used as a communication link between the system and the
program.
The second statement also specifies the purpose of opening this file. The mode does this job. Mode
can be one of the following:
r open the file for reading only.
w open the file for writing only.
a open the file for appending (or adding) data to it.
Note that both the filename and mode are specified as strings. They should be enclosed in double
quotation marks.
When trying to open a file, one of the following things may happen:
1. When the mode is ‘writing, a file with the specified name is created if the file does not exist.
The contents are deleted, if the file already exists.
2. When the purpose is ‘appending’, the file is opened with the current contents safe. A file with
the specified name is created if the file does not exist.
3. Ifthe purpose is ‘reading’, and if it exists, then the file is opened with the current contents safe
otherwise an error occurs.
Consider the following statements:

FILE *pl, *p2;
pl = fopen("data", "r");
p2 = fopen("results", "w");

The file data is opened for reading and results is opened for writing. In case, the results file
already exists, its contents are deleted and the file is opened as a new file. If data file does not exist,
an error will occur.

Many recent compilers include additional modes of operation. They include:

r+ The existing file is opened to the beginning for both reading and writing.
w+ Same as w except both for reading and writing.
a+ Same as a except both for reading and writing.

We can open and use a number of files at a time. This number however depends on the system we

use.

12.3 CLOSING A FILE

A file must be closed as soon as all operations on it have been completed. This ensures that all
outstanding information associated with the file is flushed out from the buffers and all links to the file
are broken. It also prevents any accidental misuse of the file. In case, there is a limit to the number of
files that can be kept open simultaneously, closing of unwanted files might help open the required
files. Another instance where we have to close a file is when we want to reopen the same file in a
different mode. The 1/O library supports a function to do this for us. It takes the following form:

rfd ose(file_pointer); |

This would close the file associated with the FILE pointer file_pointer. Look at the following seg-
ment of a program.

File Management in C 373

FILE *p,, *p,;
pl = fopen("INPUT", "w");
p2 = fopen("OUTPUT", "r");

.....

fclose(pl);
fclose(p2);

This program opens two files and closes them after all operations on them are completed. Once a
file is closed, its file pointer can be reused for another file.

As a matter of fact all files are closed automatically whenever a program terminates. However,
closing a file as soon as you are done with it is a good programming habit,

12.4 INPUT/OUTPUT OPERATIONS ON FILES

Once a file is opened, reading out of or writing to it is accomplished using the standard I/O routines
that are listed in Table 12.1.

The getc and putc Functions

The simplest file I/O functions are getc and putc. These are analogous to getchar and putchar
functions.and handle one character at a time. Assume that a file is opened with mode w and file
pointer fp1. Then, the statement

putc(c, fpl);

writes the character contained in the character variable ¢ to the file associated with FILE pointerfp1.
Similarly, getc is used to read a character from a file that has been opened in read mode. For example,
the statement

¢ = getc(fp2);

would read a character from the file whose file pointer is fp2.

The file pointer moves by one character position for every operation of getc or pute. The getc will
return an end-of-file marker EOF, when end of the file has been reached. Therefore, the reading
should be terminated when EOF is encountered.

Example 12.1| Write a program to read data from the keyboard, write it to a file
called INPUT, again read the same data from the INPUT file, and dis-
play it on the screen.

A program and the related input and output data are shown in Fig.12.1. We enter the input data via
the keyboard and the program writes it, character by character, to the file INPUT. The end of the data
1s indicated by entering an EOF character, which is control-Z in the reference system. (This may be
control-D in other systems.) The file INPUT is closed at this signal.

374 | Programming in ANSI C

Program
#include <stdio.h>

main()

{
FILE *f1;
char c;
printf("Data Input\n\n");
/* Open the file INPUT */
f1 = fopen("INPUT", "W");

/* Get a character from keyboard */
while((c=getchar()) != EOF)

/* Write a character to INPUT */
putc(c,fl);

/* Close the file INPUT */

fclose(fl);
printf("\nData Output\n\n");

/* Reopen the file INPUT */
f1 = fopen("INPUT","r");

/* Read a character from INPUT*/
while((c=getc(fl)) != EOF)

/* Display a character on screen */
printf("%c",c);

/* Close the file INPUT */
fclose(f1);
}

Output

Data Input
This is a program to test the file handling
features on this system™Z

Data Output
This is a program to test the file handling
features on this system

Fig. 12.1 Character oriented read/write operations on a file

File Management in C |375

The file INPUT is again reopened for reading. The program then reads its content character by
character, and displays it on the screen. Reading is terminated when getc encounters the end-of-file
mark EOF.

Testing for the end-of-file condition is important. Any attempt to read past the end of tile might
either cause the program to terminate with an error or result in an infinite loop situation.

The getw and putw Functions

The getw and putw are integer-oriented functions. They are similar to the getc and pute functions
and are used to read and write integer values. These functions would be useful when we deal with
only integer data. The general forms of getw and putw are:

putw(integer, fp);
getw(fp);

Example 12.2 illustrates the use of putw and getw functions.

Example 12.?J A file named DATA contains a series of integer numbers. Code a pro-
_ 7 gram to read these numbers and then write all ‘odd’ numbers to a file
to be called ODD and all ‘even’ numbers to a file to be called EVEN.

The program is shown in Fig. 12.2. It uses three files simultaneously and therefore we need to
define three-file pointers f1, f2 and f3.

First, the file DATA containing integer values is created. The integer values are read from the
terminal and are written to the file DATA with the help of the statement

putw{number, t1);

Notice that when we type —1. the reading is terminated and the file is closed. The next step is to
open all the three files. DATA for reading, ODD and EVEN for writing. The contents of DATA file
are read, integer by integer, by the function getw(fl) and written to ODD or EVEN file after an
appropriate test. Note that the statement

(number = getw(f1)) != EOF
reads a value, assigns the same to number, and then tests for the end-of-file mark.

Finally, the program displays the contents of ODD and EVEN files. It is important to note that the
files ODD and EVEN opened for writing are closed before they are reopened for reading.

Program
#include <stdio.h>
main()

{
FILE *f1, *f2, *f3;
int number, i;

printf("Contents of DATA file\n\n");

376 Programming in ANSIC

f1 = fopen("DATA", "w"); /* Create DATA file */
for(i = 1; i <= 30; i++)
{
scanf("%d", &number);
if(number == -1) break;
putw(number,fl1);
}
fclose{(f1);

f1 = fopen("DATA", "r");
f2 = fopen("0ODD", "w");
f3 = fopen("EVEN", "w");

/* Read from DATA file */
while((number = getw(fl)) != EOF)
{
if(number %2 == 0)
putw(number, f3); /* Write to EVEN file */
else
putw(number, f2); /* Write to ODD file */
}
fclose(fl);
fclose(f2);
fclose(f3);

f2
f3

fopen("0ODD","r");
fopen("EVEN", "r");

printf("\n\nContents of ODD file\n\n");
while((number = getw(f2)) != EOF)
printf("%4d", number);

printf("\n\nContents of EVEN file\n\n");
while((number = getw(f3)) != EOF)
printf("%4d", number);

fclose(f2);
fclose(f3);
}
Output

Contents of DATA file
111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 -1

File Management in C |} 377

Contents of ODD file
111 333 555 777 999 121 343 565

Contents of EVEN file
222 444 666 888 0 232 454

Fig. 12.2 Operations on integer data

The iprintf and fscanf Functions

So far. we have seen functions, which can handle only one character or integer at a time. Most
compilers support two other functions, namely fprintf and fscanf, that can handle a group of mixed
data simultaneously.

The tunctions fprintf and fscanfperform I/O operations that are identical to the familar printf and
scanf functions, except of course that they work on files. The first argument of these functions is a file
pointer which specifies the file to be used. The general form of fprintf is

[fprintf(fp, "control string", list);]

where fp is a file pointer associated with a file that has been opened for writing. The control string
contains output specifications for the items in the list. The /ist may include variables, constants and
strings. Example:
fprintf(fl, "%s %d %f", name, age, 7.5);
Here, name is an array variable of type char and age is an int variable.
The general format of fscanf is

|fprintf(fp, "control string", list);]

This statement would cause the reading of the items in the list from the file specified by fp, accord-
ing to the specifications contained in the control string. Example:

fscanf(f2, "%s %d", item, &quantity);

Like scanf, fscanf also returns the number of items that are successfully read. When the end of file
is reached, it returns the value EOF.

Example 12.3| Write a program to open a file named INVENTORY and store in it the
following data:

Item name Number Price Quantity
AAA-1 11 17.60 115
BBB-2 125 36.00 75
C-3 247 31.75 104

Extend the program to read this data from the file INVENTORY and
display the inventory table with the value of each item.

The program is given in Fig.12.3. The filename INVENTORY is supplied through the keyboard.
Data is read using the function fscanf from the file stdin, which refers to the terminal and it is then
written to the file that is being pointed to by the file pointer fp. Remember that the file pointer fp
points to the file INVENTORY.

378 | Programming in ANSI C

’

After closing the file INVENTORY, it is again reopened for reading. The data from the file. along
with the item values are written to the file stdout, which reters to the screen. While reading from «
file, care should be taken to use the same format specifications with which the contents have been
written to the file....é

Program
#include <stdio.h>

main()
{
FILE *fp;
int number, quantity, i;

float price, value;
char item[10], filename[10];

printf("Input file name\n");
scanf("%s", filename);
fp = fopen(filename, "w");
printf("Input inventory data\n\n");
printf("Item name Number Price Quantity\n");
for(i = 1; 1 <= 3; i++)
{
fscanf(stdin, "%s %d %f %d",
item, &number, &price, &quantity);
fprintf(fp, "%s %d %.2f %d",
item, number, price, quantity);
}
fclose(fp);
fprintf(stdout, "\n\n");

fp = fopen(filename, "r");

printf("Item name Number Price Quantity Value\n");
for(i = 1; i <= 3; i++)
{

fscanf(fp, "%s %d %f d",item,&number,&price,&quantity);
value = price * quantity;
fprintf(stdout, "%-8s %7d %8.2f %8d %11.2f\n",
item, number, price, quantity, value);
}
fclose(fp);
}

OQutput

Input file name

File Management in C |379

INVENTORY
Input inventory data

Item name Number Price Quantity
AAA-1 111 17.50 115
BBB-2 125 36.00 75
C-3 247 31.75 104

Item name Number Price Quantity Value
AAA-1 111 17.50 115 2012.50
BBB-2 125 36.00 75 2700.00
C-3 247 31.75 104 3302.00

Fig. 12.3 Operations on mixed data types

It is possible that an error may occur during 1/0 operations on a file. Typical error situations include:
1. Trying to read beyond the end-of-file mark.
Device overtlow.
Trying to use a file that has not been opened.
Trying to perform an operation on a file, when the file is opened for another type of operation.
Opening a file with an invalid filename.
6. Attempting to write to a write-protected file.

It we fail to check such read and write errors, a program may behave abnormally when an error
occurs. An unchecked error may result in a premature termination of the program or incorrect output.
Fortunately. we have two status-inquiry library functions; feof and ferror that can help us detect I/O
errors in the tiles.

The feof function can be used to test for an end of file condition. It takes a FILE pointer as its only
argument and returns a nonzero integer value if all of the data from the specified file has been read.
and returns zero otherwise. If fp is a pointer to file that has just been opened for reading, then the
statement

PRSI 5

N

if(feof(fp))
printf("End of data.\n");

would display the message “"End of data.” on reaching the end of file condition.

The ferror function reports the status of the file indicated. It also takes a FILE pointer as its
argument and returns a nonzero integer if an error has been detected up to that point, during process-
ing. It returns zero otherwise. The statement

if(ferror(fp) != 0)
printf("An error has occurred.\n");

would print the error message, if the reading is not successful.

380] Programming in ANSI C

We know that whenever a file is opened using fopen function, a file pointer is returned. If the file
cannot be opened for some reason, then the function returns a NULL pointer. This facility can be used
to test whether a file has been opened or not. Example:

if(fp == NULL)
printf("File could not be opened.\n");

| Example 12.4| Write a program to illustrate error handling in file operations.

The program shown in Fig. 12.4 illustrates the use of the NULL pointer test and feof function.
When we input filename as TETS, the function call

fopen("TETS", "r");
returns a NULL pointer because the file TETS does not exist and therefore the message “Cannot
open the file” is printed out.

Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and
hence the program prints the message “Ran out of data™ and terminates further reading.

Program
#include <stdio.h>

main()

{

char *filename;

FILE *fpl, *fp2;

int i, number;

fpl = fopen("TEST", "w");

for(i = 10; i <= 100; i += 10)
putw(i, fpl);

fclose(fpl);

printf("\nlnput filename\n");

open file:
scanf("%s", filename);

if((fp2 = fopen(filename,"r")) == NULL)

{
printf("Cannot open the file.\n");
printf("Type filename again.\n\n");
goto open file;

}

else

for(i = 1; i <= 20; i++)

File Management in C]381

{ number = getw(fp2);
if(feof(fp2))
{
printf("\nRan out of data.\n");
break;

else
printf("%d\n", number);

}

fclose(fp2);
}

Output

Input filename

TETS

Cannot open the file.
Type filename again.

TEST
10
20
30
40
50
60
70
80
90
100

Ran out of data.

Fig. 12.4 Illustration of error handling in file operations

12.6 RANDOM ACCESS TO FILES

So far we have discussed file functions that are useful for reading and writing data sequentially.
There are occasions, however, when we are interested in accessing only a particular part of a file and
not in reading the other parts. This can be achieved with the help of the functions fseek, ftell, and
rewind available in the /O library.

ftell takes a file pointer and return a number of type long, that corresponds to the current position.
This function is useful in saving the current position of a file, which can be used later in the program.
It takes the following form:

382 I Programming in ANSIC
n = ftell(fp);

n would give the relative offset (in bytes) of the current position. This means that n bytes have
already been read (or written).
rewind takes a file pointer and resets the position to the start of the file. For example, the statement

rewind(fp);
n = ftell(fp);

would assign 0 to n because the file position has been set to the start of the file by rewind. Remember,
the first byte in the file is numbered as 0, second as |, and so on. This function helps us in reading a
file more than once, without having to close and open the file. Remember that whenever a file is
opened for reading or writing, a rewind is done implicitly.

fseek function is used to move the file position to a desired location within the file. It takes the
following form:

Ifseek(file_ptr, offset, position) ;]

file_ptris a pointer to the file concerned, offset is a number or variable of type long, and position is
an integer number. The offset specifies the number of positions (bytes) to be moved from the location
specified by position. The position can take one of the following three values:

Value Meaning
0 Beginning of file
1 Current position
2 End of file

The offset may be positive, meaning move forwards, or negative, meaning move backwards.
Examples in Table 12.2 illustrate the operations of the fseek function:

Table 12.2 Operations of fseek Function

Statement Meaning
fseek(fp,0L,0); Go to the beginning.
(Stmilar to rewind)
fseek(fp.OL,1); Stay at the current position.
(Rarely used)
fseek(fp,0L,2); Go to the end of the file, past the last character of the file.
fseek(fp,m.0); Move to (m+1)th byte in the file.
fseek(fp,m,1); Go forward by m bytes.
fseek(fp.-m,1); Go backward by m bytes from the current position.
fseek(fp,-m,2); Go backward by m bytes from the end. (Positions the file to the

mth character from the end.)

When the operation is successful, fseek returns a zero. If we attempt to move the file pointer
beyond the file boundaries, an error occurs and fseek returns -1 (minus one). It is good practice to
check whether an error has occurred or not, before proceeding further.

Example 12.5| Write a program that uses the functions ftell and fseek.

File Management in C]383

A program employing ftell and fseek functions is shown in Fig. 12.5. We have created a file
RANDOM with the following contents:

Position—--~—> 0 1 2 25
Character
stored ————> A B C ... 7

We are reading the file twice. First, we are reading the content of every fifth position and printing
its value along with its position on the screen. The second time, we are reading the contents of the file
from the end and printing the same on the screen.

During the first reading, the file pointer crosses the end-of-file mark when the parameter n of
fsee(fp,n,0) becomes 30. Therefore, after printing the content of position 30, the loop is terminated.

For reading the file from the end, we use the statement

fseek(fp,-1L,2);
to position the file pointer to the last character. Since every read causes the position to move forward

by one position, we have to move it back by two positions to read the next character. This is achieved
by the function

fseek(fp, ~2L, 1);

in the while statement. This statement also tests whether the file pointer has crossed the file boundary
or not. The loop is terminated as soon as it crosses it.

Program

#include <stdio.h>

main()

{
FILE *fp;
long n;
char ¢;
fp = fopen("RANDOM", "w");
while((c = getchar()) != EOF)

putc(c,fp);

printf("No. of characters entered = %1d\n", ftell(fp));
fclose(fp);

fp = fopen("RANDOM","r");

n = 0L;

while(feof(fp) == 0)

{
fseek(fp, n, 0); /* Position to (n+l)th character */
printf("Position of %c is %1d\n", getc(fp),ftell(fp));
n = n+5L;

}

putchar('\n');

384| Programming in ANSIC

fseek(fp,-1L,2); /* Position to the last character */
do
{

}
while(!fseek(fp,-2L,1));
fclose(fp);

putchar(getc(fp));

}
Output

ABCDEFGHIJKLMNOPQRSTUVWXYZ~Z
No. of characters entered = 26
Position of A is O

Position of F is 5
Position of K is 10
Position of P is 15
Position of U is 20
Position of Z is 25

Position of is 30

ZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 12.5 Illustration of fseek and ftell functions

lﬂ(cmple 12.6| Write a program to append additional items to the file INVENTORY
created in Example 12.3 and print the total contents of the file.

The program is shown in Fig. 12.6. It uses a structure definition to describe each item and a
function append() to add an item to the file.

On execution, the program requests for the filename to which data is to be appended. After ap-
pending the items, the position of the last character in the file is assigned to n and then the file is
closed.

The file is reopened for reading and its contents are displayed. Note that reading and displaying
are done under the control of a while loop. The loop tests the current file position against n and is
terminated when they become equal.

Program
#include <stdio.h>

struct invent record
{
char name[10];
int number;
float price;
int quantity;

File Management in C

main()
{
struct invent record item;
char filename[10];
int response;
FILE *fp;
long n;
void append (struct invent record *x, file *y);
printf("Type filename:");
scanf("%s", filename);

fp = fopen(filename, "a+");
do
{
append(&item, fp);
printf("\nltem %s appended.\n",item.name);
printf("\nDo you want to add another jitem\
(1 for YES /0O for NO)?");
scanf("%d", &response);
} while (response == 1);

n = ftell(fp); /* Position of last character */
fclose(fp);

fp = fopen(filename, "r");

while(ftell(fp) < n)
{
fscanf(fp,"%s %d %f %d",
item.name, &item.number, &item.price, &item.quantity);
fprintf(stdout,"%-8s %7d %8.2f %8d\n",
item.name, item.number, item.price, item.quantity);
}
fclose(fp);
}
void append(struct invent record *product, File *ptr)
{
printf("Item name:");
scanf("%s", product—>name);
printf("Item number:");
scanf("%d", &product—>number);
printf("Item price:");
scanf("%f", &product—>price);
printf("Quantity:");
scanf("%d", &product—>quantity);
fprintf(ptr, "%s %d %.2f %d",

| 385

386| Programming in ANSI C

product->name,

product—>number,

product—>price,

product—>quantity);
1

Output
Type filename:INVENTORY
Item name: XXX
Item number:444
Item price:40.50
Quantity:34

Item XXX appended.
Do you want to add another item(l for YES /0 for NO)?1

Item name:YYY
Item number:555
Item price:50.50
Quantity:45

Item YYY appended.
Do you want to add another item(1l for YES /0 for NO)?0

AAA-1 111 17.50 115
BBB-2 125 36.00 75
C-3 247 31.75 104
XXX 444 40.50 34
YYY 555 50.50 45

Fig. 12.6 Adding items to an existing file

P27 € MM S o ARGETMY G

What is a command line argument? It is a parameter supplied to a program when the program is
invoked. This parameter may represent a filename the program should process. For example, if we
want to execute a program to copy the contents of a file named X_FILE to another one named
Y_FILE., then we may use a command line like

C >PROGRAM X_FILE Y_FILE

where PROGRAM is the filename where the executable code of the program is stored. This elimi-
nates the need for the program to request the user to enter the filenames during execution. How do
these parameters get into the program?

We know that every C program should have one main function and that it marks the beginning of
the program. But what we have not mentioned so far is that it can also take arguments like other
functions. In fact main can take two arguments called arge and argv and the information contained
in the command line is passed on to the program through these arguments, when main is called up by
the system.

File Management in C |387

The variable arge is an argument counter that counts the number of arguments on the command
line. The argy is an argument vector and represents an array of character pointers that point to the
command line arguments. The size of this array will be equal to the value of argc. For instance, for
the command line given above. argc is three and argv is an array of three pointers to strings as shown
below:

argv[0] -—> PROGRAM
argv[1] —> X_FILE
argv{2] —> Y_FILE

In order to access the command line arguments, we must declare the main function and its param-
eters as follows: :

main(int arge, char *argv[])

ooooo

The first parameter in the command line is always the program name and therefore argv[0] always
represents the program name.

Example 12.7| Write a program that will receive a filename and a line of text as com-
mand line arguments and write the text to the file.

Figure 12.7 shows the use of command line arguments. The command line is
F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

Each word in the command line is an argument to the main and therefore the total number of
arguments is 9.
The argument vector argv[1] points to the string TEXT and therefore the statement
fp = fopen(argv[1], "w");

opens a file with the name TEXT. The for loop that follows immediately writes the remaining 7
arguments to the file TEXT.

Program
#include <stdio.h>

main(int arge, char *argv[])
{

FILE *fp;

int i;

char word[15];

388| Programming in ANSI C

fp = fopen(argv[1], "w"); /* open file with name argv[l] */
printf("\nNo. of arguments in Command line = %d\n\n",argc);
for(i = 2; i < argc; i++)

fprintf(fp,"%s ", argv[i]); /* write to file argv[l] */
fclose(fp);

/* MWriting content of the file to screen */

printf("Contents of %s file\n\n", argv[1]);
fp = fopen(argv([1}, "r");
for{(i = 2; i < argc; i++)
{
fscanf(fp,"%s", word);
printf("%s ", word);

}

fclose(fp);
printf("\n\n");

/* MWriting the arguments from memory */

for(i = 0; i < argc; i++)
printf("%*s \n", i*5,argv[i]);
}

Output
C>F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGG
‘No. of arguments in Command line = 9
Contents of TEXT file
AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

C:\C\F12_7.EXE
TEXT
AAAAAA
BBBBBB
ceeeee
DDDDDD
EEEEEE
FFFFFF
GGGGGG

Fig. 12.7 Use of command line arguments

File Management in € |389

Just Remember

Do not try to use a file before opening it.

Remember, when an existing file is open using ‘w’ mode, the contents of file are
deleted. '

When a file is used for both reading and writing, we must open it in ‘w+’ mode.
EOF is integer type with a value —1. Therefore, we must use an integer variable
to test EOF.

It is an error to omit the file pointer when using a file function.

It is an error to open a file for reading when it does not exist.

It is an error to try to read from a file that is in write mode and vice versa.

It is an error to attempt to place the file marker before the first byte of a file.

It is an error to access a file with its name rather than its file pointer.

Itis a good practice to close all files before terminating a program.

BB

EBRDRRBRDR BB

REVIEW QUESTIONS

12.1 State whether the following statements are true or false.

(a) A file must be opened before it can be used.

(b) All files must be explicitly closed.

(c) Files are always referred to by name in C programs.

(d) Using fseek to position a file beyond the end of the file is an error.

(e) Function fseek may be used to seek from the beginning of the file only.
12.2 Fill in the blanks in the following statements.

(a) The mode is used for opening a file for updating.

(b) The function ___may be used to position a file at the beginning.
(c) The function ___ gives the current position in the file.

(d) The function is used to write data to randomly accessed file.

12.3 Describe the use and limitations of the functions getc and putc.
12.4 What is the significance of EOF?
12.5 When a program is terminated, all the files used by it are automatically closed. Why is it then
necessary to close a file during execution of the program?
12.6 Distinguish between the following functions:
(a) getc and getchar
(b) printf and fprintf
(c) feof and ferror
12.7 How does an append mode differ from a write mode?
12.8 What are the common uses of rewind and ftell functions?
12.9 Explain the general format of fseek function?
12.10 What is the difference between the statements rewind(fp); and fseek(fp,0L,0);?

390

Programming in ANSIC

PROGRAMMING EXERCISES

12.1
12.2

12.3
12.4
12.5

Write a program to copy the contents of one file into another.

Two files DATA] and DATA?2 contain sorted lists of integers. Write a program to produce a
third file DATA which holds a single sorted, merged list of these two lists. Use command line
arguments to specify the file names.

Write a program that compares two files and returns 0 if they are equal and 1 is they are not.
Write a program that appends one file at the end of another.

Write a program that reads a file containing integers and appends at its end the sum of all the
integers.

Chapter

13

Dynamic Memory Allocation '
and Linked Lists

13.1 INTRODUCTION

Most often we face situations in programming where the data is dynamic in nature. That is, the
number of data items keep changing during execution of the program. For example, consider a pro-
gram for processing the list of customers of a corporation. The list grows when names are added and
shrinks when names are deleted. When list grows we need to allocate more memory space to the list
to accommodate additional data items. Such situations can be handled more easily and effectively by
using what is known as dvhamic data structures in conjunction with dynamic memory management
techniques.

Dynamic data structures provide flexibility in adding, deleting or rearranging data items at run
time. Dynamic memory management techniques permit us to allocate additional memory space or to
release unwanted space at run time, thus, optimizing the use of storage space. This chapter discusses
the concept of linked lists, one of the basic types of dynamic data structures. Before we take up linked
lists, we shall briefly introduce the dynamic storage management functions that are available in C.
These functions would be extensively used in processing linked lists.

13.2 DYNAMIC MEMORY ALLOCATION

C language requires the number of elements in an array to be specified at compile time. But we may
not be able to do so always. Our initial judgment of size, if it is wrong, may cause failure of the
program or wastage of memory space.

Many languages permit a programmer to specify an array’s size at run time. Such languages have
the ability to calculate and assign, during execution, the memory space required by the variables ina
program. The process of allocating memory at run time is known as dynamic memory allocation.
Although C does not inherently have this facility, there are four library routines known as “memory

392 |t Programming in ANSI C

management functions™ that can be used for allocating and freeing memory during program execu-
tion. They are listed in Table 13.1. These functions help us build complex application programs that
use the available memory intelligently.

Table 13.1 Memmy Allocation Functions

Function Task

malloc Allocates request size of bytes and returns a pointer to the first byte of the
allocated space

calloc Allocates space for an array of elements, initializes them to zero and then
returns a pointer to the memory.

free Frees previously allocated space

realloc Modifies the size of previously allocated space

Memory Allocation Process

Before we discuss these functions, let us look at the memory allocation process associated with a C
program. Figure 13.1 shows the conceptual view of storage of a C program in memory.

Local variables > Stack

SV

Free memory * Heap

Global variables

_

\ Permanent
1‘ Storage area

C program instructions

Fig. 13.1 Storage of a C program

The program instructions and global and static variables are stored in a region known as perma-
nent storage area and the local variables are stored in another area called stzack. The memory space
that is located between these two regions is available for dynamic allocation during execution of the
program. This free memory region is called the heap. The size of the heap keeps changing when
program is executed due to creation and death of variables that are local to functions and blocks.
Therefore, it is possible to encounter memory “overflow” during dynamic allocation process. In such
situations, the memory allocation functions mentioned above return a NULL pointer (when they fail
to locate enough memory requested). :

13.3 ALLOCATING A BLOCK OF MEMORY: MALLOC

A block of memory may be allocated using the function malloc. The malloc function reserves a block
of memory of specified size and returns a pointer of type void. This means that we can assign it to any
type of pointer. It takes the following form:

Dynamic Memory Allocation and Linked Lists | 393

Iptr = (cast-type *) malloc(byte-size);]

ptr is a pointer of type cast-tvpe. The malloc returns a pointer (of cast type) to an area of memory
with size byte-size.
Example:

x = (int *) malloc (100 *sizeof(int));

On successful execution of this statement. a memory space equivalent to 100 times the size of an
int” bytes is reserved and the address of the first byte of the memory allocated is assigned to the
pointer x of type of int.

Similarly, the statement

cptr = (char*) malloc(10);
allocates 10 bytes of space for the pointer cptr of type char. This is illustrated as:
cptr

P
L 4

Address of first byte

i
10 bytes of space

Note that the storage space allocated dynamically has no name and therefore its contents can be
accessed only through a pointer.
We may also use malloc to allocate space for complex data types such as structures. Example:

st _var = (struct store *)malloc(sizeof(struct store));

where st_var is a pointer of type struct store

Remember, the malloc allocates a block of contiguous bytes. The allocation can fail if the space in
the heap is not sufficient to satisfy the request. If it fails, it returns a NULL. We should therefore
check whether the allocation is successful before using the memory pointer. This is illustrated in the
program in Fig.13.2.

Example 13.1; Write a program that uses a table of intfegers whose size will be speci-
fied interactively at run time.

The program is given in Fig.13.2. It tests for availability of memory space of required size. If it is
available, then the required space is allocated and the address of the first byte of the space allocated
is displayed. The program also illustrates the use of pointer variable for storing and accessing the
table values.

Program

#include <stdio.h>
#include <stdlib.h>
#define NULL O

394 Programming in ANSIC

main()
{
int *p, *table;
int size;
printf("\nWhat is the size of table?");
scanf("%d",size);
printf("\n")
J A s Memory allocation -------------- */
if((table = (int*)malloc(size *sizeof(int))) == NULL)
{
printf("No space available \n");
exit(1l);
}
printf("\n Address of the first byte is %u\n", table);
/* Reading table values*/
printf("\nInput table values\n");
for (p=table; p<table + size; p++)
scanf("%d",p);
/* Printing table values in reverse order*/
for (p = table + size -1; p >= table; p —-)
printf("%d is stored at address %u \n",*p,p);
}
Output
What is the size of the table? §
Address of the first byte is 2262
Input table values
11 12 13 14 15
15 is stored at address 2270
14 is stored at address 2268
13 is stored at address 2266
12 is stored at address 2264
11 is stored at address 2262

Fig. 13.2 Memory allocation with malloc

13.4 ALLOCATING MULTIPLE BLOCKS
OF MEMORY: CALLOC

chmismmﬂwrmmnmyaﬂmmﬁmlMnmmnﬂwtmnmnw“yuwdﬂnraweﬂmgnwmowspwxat
run time for storing derived data types such as arrays and structures. While malloc allocates a single
block of storage space, calloc allocates multiple blocks of storage, each of the same size. and then
sets all bytes to zero. The general form of calloe is:

Dynamic Memory Allocation and Linked Lists |395

lptr‘ = (cast-type *) calloc (n, eZem-size);I

The above statement allocates contiguous space for » blocks, each of size elem-size bytes. All
bytes are initialized to zere and a pointer to the first byte of the allocated region is returned. If there
is not enough space, a NULL pointer is returned.

The following segment of a program allocates space for a structure variable:

struct student
{
char name[25];
float age;
Tong int id_num;
b
typedef struct student record;
record *st ptr;
int class_size = 30;

st _ptr=(record *)calloc(class_size, sizeof(record));

record is of type struct student having three members: name, age and id_num. The calloc allo-
cates memory to hold data for 30 such records. We must be sure that the requested memory has been
allocated successfully before using the st_ptr. This may be done as follows:

if(st_ptr == NULL)

{
printf("Available memory not sufficient");
exit(1);

}

i3.5 RELEASING THE USED SPACE: FREE

Compile-time storage of a variable is allocated and released by the system in accordance with its
storage class. With the dynamic run-time allocation, it is our responsibility to release the space when
it is not required. The release of storage space becomes important when the storage is limited.

When we no longer need the data we stored in a block of memory, and we do not intend to use that
block for storing any other information, we may release that block of memory for future use, using the
free function:

free (ptr);

ptr is a pointer to a memory block which has already been created by malloc or calloc. Use of an
invalid pointer in the call may create problems and cause system crash. We should remember two
things here:

396| Programmingin ANSIC

1. It is not the pointer that is being released but rather what it points to. :
2. Torelease an array of memory that was allocated by calloc we need only to release the pointer
once. It is an error to attempt to release elements individually.
The use of free function has been illustrated in Example 13.2.

13.6 ALTERING THE SIZE OF A BLOCK: REALLOC

It is likely that we discover later, the previously allocated memory is not sufficient and we need
additional space for more elements. It is also possible that the memory allocated is much larger than
necessary and we want to reduce it. In both the cases, we can change the memory size already allo-
cated with the help of the function realloc. This process is called the reallocation of memory. For
example, if the original allocation is done by the statement

ptr = malloc(size);
then reallocation of space may be done by the statement
ptr = realloc(ptr, newsize);

This function allocates a new memory space of size newsize to the pointer variable ptr and returns
a pointer to the first byte of the new memory block. The newsize may be larger or smaller than the
size. Remember, the new memory block may or may not begin at the same place as the old one. In
case, it is not able to find additional space in the same region, it will create the same in an entirely
new region and move the contents of the old block into the new block. The function guarantees that
the old data will remain intact.

If the function is unsuccessful in locating additional space, it returns a NULL pointer and the
original block is freed (lost). This implies that it is necessary to test the success of operation before
proceeding further. This is illustrated in the program of Example 13.2.

Example 13.2) Write a program to store a character string in a block of memory
space created by malloc and then modify the same 1o store a larger
string.

The program is shown in Fig. 13.3. The output illustrates that the original buffer size obtained is
modified to contain a larger string. Note that the original contents of the buffer remains same even
after modification of the original size.

Program

#include <stdio.h>

#include<stdlib.h>

#define NULL O

main()

{
char *buffer;
/* Allocating memory */
if((buffer = (char *)malloc(10)) == NULL)
{

Dynamic Memory Allocation and Linked Lists |397

printf("malloc failed.\n");
exit(1);
}
printf("Buffer of size %d created \n", msize(buffer));
strcpy(buffer, "HYDERABAD");
printf("\nBuffer contains: %s \n ", buffer);
/* Reallocation */
if((buffer = (char *)realloc(buffer, 15)) == NULL)
{
printf("Reallocation failed. \n");
exit(1);
}
printf("\nBuffer size modified. \n");
printf("\nBuffer still contains: %s \n",buffer);
strcpy (buffer, "SECUNDERABAD");
printf("\nBuffer now contains: %s \n",buffer);
/* Freeing memory */
free(buffer);
}

Output
Buffer of size 10 created
Buffer contains: HYDERABAD
Buffer size modified
Buffer still contains: HYDERABAD
Buffer now contains: SECUNDERABAD

Fig. 13.3 Reallocation and release of memory space

13.7 CONCEPTS OF LINKED LISTS fo ;

We know that a list refers to a set of items organized sequentially. An array is an example of list. In
an array, the sequential organization is provided implicitly by its index. We use the index for access-
ingandrnmﬂpuhﬁonofanayeknwnm.Onern@orpnﬂﬂenlwnhtheanaysmthmthesﬁeofananay
must be specified precisely at the beginning. As pointed out earlier, this may be a difficult task in
many real-life applications.

A completely different way to represent a list is to make each item in the list part of a structure that
aboconﬁﬁnsa“ﬁnk“mwhesnucuueconmhﬁngthenexthennasshowninlﬁg.114.Thmtypeofhm
is called a linked list because it is a list whose order is given by links from one item to the next.

structure 1 structure 2 structure 3

S i

item .__*_*,,,J item ~— —fﬁ—--——l item -—t >
|

Fig. 13.4 A linked list

398| Programming in ANSIC

Each structure of the list is called a node and consists of two fields. one containing the item, and
the other containing the address of the next item (a pointer to the next item) in the list. A linked list is
therefore a collection of structures ordered not by their physical placement in memory (like an array)
but by logical links that are stored as part of the data in the structure itself. The link is in the form of
a pointer to another structure of the same type. Such a structure is represented as follows:

struct node
{
int item;
struct node *next;
}s
The first member is an integer item and the second a pointer to the next node in the list as shown
below. Remember, the item is an integer here only for simplicity, and could be any complex data
type.
node

>t

item next

Such structures which contain a member field that points to the same structure type are called se/f-
refrential structure.
A node may be represented in general form as follows:

struct tag-name

{
type memberl;
type member?2;

struct tag-name *next;

s

The structure may contain more than one item with different data types. However, one of the items
must be a pointer of the type tag-name.

A O S

member1m member 2 member N next

Let use consider a simple example to illustrate the concept of linking. Suppose we define a struc-
ture as follows:

struct Tink_list
{
float age:
struct tink list *next;

s

Dynamic Memory Allocation and Linked Lists | 399

For simplicity, let as assume that the list contains two nodes nodel and node2. They are of type
struct link_list and are defined as follows:

struct link_list nodel, node2;
This statement creates space for two nodes each containing two empty fields as shown:

node1

nodetl.age

node1.next

node2.age

node2.next

The next pointer of nodel can be made to point to node2 by the statement
nodel.next = &node2;

This statement stores the address of node2 into the field nodel.next and thus establishes a “link”
between nodel and node2 as shown:

node1
node1.age
XXXX node1.next
node2
Link
node2.age
node2.next

“xxxx"" is the address of node2 where the value of the variable node2.age will be stored. Now let us
assign values to the field age.

nodel.age = 35.50;
node2.age = 49.00;
The result is as follows:
nodel -
} 35.50 node1.age
E XXXX node1.next
 S—
. _hode2
[Link ' 1

49.00 | node2.age

node2.next

400 I Programming in ANSI C
We may continue this process to create a liked list of any number of values.
For example:
node2.next = &node3;

would add another link provided node3 has been declared as a variable of type struct link list.

No list goes on forever. Every list must have an end. We must therefore indicate the end of a linked
list. This is necessary for processing the list. C has a special pointer value called null that can be
stored in the next field of the last node. In our two-node list, the end of the list is marked as follows:

node2.next = 0;

The final linked list containing two nodes is as shown:

node1
35.50 node1.age
XXXX node1.next
node27 -
Link 49.00 node2.age
0 node2.next
(null pointer)

The value of the age member of node2 can be accessed using the next member of nodel as
follows:

printf("%f\n", nodel.next->age);

13.8 ADVANTAGES OF LINKED LISTS

A linked list is dynamic data structure. Therefore, the primary advantage of linked lists over arrays
. 1s that linked lists can grow or shrink in size during the execution of a program. A linked list can be
made just as long as required.

Another advantage is that a linked list does not waste memory space. It uses the memory that is just
needed for the list at any point of time. This is because it is not necessary to specify the number of
nodes to be used in the list.

The third, and the more important advantage is that the linked lists provide flexibility is allowing
the items to be rearranged efficiently. It is easier to insert or delete items by rearranging the links.
This is shown in Fig. 13.5.

The major limitation of linked lists is that the access to any arbitrary item is little cumbersome and
time consuming. Whenever we deal with a fixed length list, it would be better to use an array rather
than a linked list. We must also note that a linked list will use more storage than an array with the
same number of items. This is because each item has an additional link field.

